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Effects of self-avoidance on the tubular phase of anisotropic membranes
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We study the tubular phase of self-avoiding anisotropic membranes. We discuss the renormalizability of the
model Hamiltonian describing this phase, and from a renormalization group equation derive some general
scaling relations for the exponents of the model. We show how particular choices of renormalization factors
reproduce the Gaussian result, the Flory theory, and the Gaussian variational treatment of the problem. We then
study the perturbative renormalization to one loop in the self-avoiding parameter using dimensional regular-
ization and ane expansion about the upper critical dimension, and determine the critical exponents to first
order ine. [S1063-651X97)07512-0

PACS numbes): 64.60.Fr, 05.40¢], 82.65.Dp

I. INTRODUCTION imply that there is only one independent exponent in the
model. Special cases of this treatment reproduce the trivial
The statistical mechanics of isotropic tethered membrane§aussian model as well as the Flory theory and the Gaussian
has been extensively studi¢dl,?]. In a recent paper Radzi- Vvariational approximation results of RT. In Sec. lll we estab-
hovsky and TonefRT) [3] showed that intrinsically aniso- lish the perturbativc_a renormalizabiliyy .of the model, and
tropic tethered membranes are surprisingly rich systems. IRrove that the bending energy term is indeed not renormal-
particular, they exhibit an intermediate tubular phase beized.
tween the crumpled and flat phases typical of isotropic teth- In Sec. IV we calculate the critical exponents to first order
ered membrand#—9]. The tubular phase is characterized byin an e expansion about the upper critical dimension for the
being extended in one direction and crumpled in the other'élévance of self-avoidance. We use the techniques of di-
Furthermore, any degree of anisotropy is expected to be remensional regularization and the multilocal operator product
evant, so such systems could be widespread in nature axpansion of Ref[15]. We give the corresponding predic-
very important. It is not hard to imagine many situations intions of all relevant critical exponents for the case of a physi-
which the polymerization of a fluid membrane occurs aniso£al membrane in the tubular phase.
tropically.
Recently, the existence of this tubular phase for physical
anisotropic membranes has been confirmed by large-scale [l. SCALING RELATIONS
Monte Carlo simulationg10] and the crumpled-to-tubular
and tubular-to-flat phase transitions both observed. In th
case of self-avoiding tethered membranes, current numeric

evidence suggests that the crumpled phase is destroyedj tts(D=2 corresponding to membranesith one stiff di-

physical dimensiongl1]. This enhances the possible signifi- ; - L .
cance of an ordered tubular phase for self-avoiding anisor-ectlony and O —1) soft directions, [see Fig. 13)]. In the

; . . . . _tubular phase, such an object will be extended inythei-
tropic physical membranes—the only transition left in this " - . I .
2. rection and crumpled in the transverse direction. Using a
case may be the tubular-to-flat transition.

In this paper we study the effects of self-avoidance in theMonge-Ilke representation, the point with coordinates

tubule model of a self-avoiding tubule, previously introducedi(r)](l ,t)(])em(;r.lgir:]n:r:git:)rﬁgf V‘g&gz%la?z a pss;té(gh(xév i’tﬁ’y;
and analyzed by RT3]. This model may be considered as . . X g space, .
the analog of the Edwards model of self-avoiding mem_(d— 1)-dimensional vector field perpendicular to thdirec-

branes[12—14, appropriately adapted to the tubular geom_t|on. Adapting the Edwards model for self-avoiding mem-
etry, with bending rigidity in the extended direction of the ar::]ﬁtsoﬁ)ingej?eometry of the tubular phase, RT obtained the
tubule and self-avoidance in its crumpled direction.

In Sec. Il we use a renormalization group equation to
reproduce some of the critical exponent scaling relations of
R_T, and derive some new ones. These relations 'hoId proy=1 dD‘lxldy{[af,h(xL W12+, h(x, ,y)]2}
vided that the bending energy term is not renormalized, and

We start by reviewing RT’'s model and scaling results for
e tubular phase of self-avoiding anisotropic membranes
.3]. We consider the generalized caseDoflimensional ob-

b
2 f dP~1x, &~ 1x, dys@ D[ h(x, .y)—h(x. .y)].
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gives finite results at=0 when expressed in terms of the
renormalized self-avoiding parameteff. We will moreover
show that the bending energy term is not renormalized; that

(@ is,

Z=1. (2.6

h, , - This assumption is crucial in the derivation of the scaling

) laws below. The bardEq. (2.1)] and renormalized Eq.
(2.5] and renormalizedEq. (2.5] Hamiltonians can be
made identical by appropriate rescalings of the height field
hR, transverse coordinabéf, and self-avoiding coupling®

/;//; o in the following way:
h, hR(XT ,Y):Zil_D)Mh(XL Y
xR=z71%,, 2.7
FIG. 1. (a) An anisotropic membrane with a stiffdirection and
a soft x, direction; (b) after embedding, the membrane forms a bR= b,ufEZng(f*D)(d*a)M.
tubule, extended in the stiff direction and crumpled in the soft
direction. Consider now the height fluctuations in the bare model as

determined by the correlation function
The first two terms describe the elastic properties of the L
membrane in the absence of self-avoidance, and represent a _ 2
bending energy term in the extended stiftlirection and an Glx..y)=~ 2(d—1) ([h(x,y)=h(0.0T). (2.8
effective entropically generated elastic term in the crumpled
direction. The third term is a two-body contact interactionFrom Eqg.(2.7) the renormalized version of this correlation
with excluded voluméor self-avoiding parameteb. Due to  function satisfies
the extended nature of the tubule in théirection, the self-

avoiding interaction involves only points which have the RAJR (N R(yR \\_ 1R 2
samey coordinate along the membraf@. CTxy)= 2(d—1) ([h°(x.y)=h™0,019r
The engineering dimensions of the fields and coordinates (1-D)2
are[y]=1,[x,]=2 and =Z; TG((xLLY). (2.9
fo=[h]=%-D. 2.2 Writing wd/dulo[ZP° " V"?Gg(xT ,y)]=0, where the deriva-
tive is taken at fixed bare parameterwe obtain the renor-
This implies[b]= — e with [3] malization group equation
_3p- 2 (5 D|d 2.3 7 GRiiox, - oRy 2L soRo0, (21
€= 573 : (2.3 g G ok G =0, (210

We consider the model fof <D <3 only, where the bare where 5=ud/du|InZ, . We suppose here that an infrared
roughness exponedt, Eq.(2.2), satisfies 6<{y<1. Setting stable fixed point is reached, describing the large scale prop-
e€=0 fixes the upper critical dimension for the relevance oferties of the membrane. Equati¢®.10 holds precisely at
the self-avoiding interaction to H&] this fixed point. On the other hand, simple scaling gives the
homogeneity equation
dulD)= oo 2 (2.9
uc T 5_on’ . J J J
5-2D ng, G-y 5 GR-2x, - GRe(5-2D)GR-0.
with, in particular,d,(2)=11. (2.1)
In Sec. Il we will show that the Hamiltonia(®.1) renor-
malizes onto itself. In other words, one can find renormaliza\Ve thus obtain the fixed point renormalization group equa-
tion factorsZ, Z, , andZ, such that the renormalized theory, tion
using the renormalized Hamiltonian P 1 P
1 yWGR'FEXL WGR—ZQVGRIO, (2.12
HR=3 f O™ EdY{ZaPhR(x ) 12+ Z, [0ThR(xT ) 12} :
where the anisotropy exponentind the roughness exponent
ZybRu® { are given by
2

+ f dP~1xRdP~1x/Rdysd-b

X[hR(xR,y)—hR(x /R y)], (2.5 =05
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A. Flory theory

1-D
£=bot 4 % (213 In Flory theory one assumes that elastic energies are com-

parable to self-avoiding energies. If this is to remain true
with the bare roughness exponefy given by Eq.(2.2).  under renormalization, one should require that both terms
Equation(2.12 implies the scaling renormalize in the same way, viZ, =Z,. Given this as-
sumption, one finds from Eq2.7) that

Gr(X} .y>~y24F1[y/<xE>Z]~<xf>2VF2[y/<xE)Z]i2 0 - L ! 216

where the size exponent and roughness exponedtare In this case the fixed point condition directly determidaa
related byv={z. Eliminating § in Eq. (2.13, we thus find terms ofe to be
the very general scaling relations

—4e
_ o= , 2.1
=2, 1°P P4+ (D-1)(d+3)} 217
2 2z’
(2.19 with € as in Eq.(2.3). Using Egs(2.13 and(2.15), the size
3z (1-D) exponenty is then found to be
V= 7 2 .
_(D+1) (218
Rewriting Eq.(2.14 in momentum space, and using the de- P dr) |

rived scaling relations, one finds that the inverse of the
height field propagatoé’l(q,pi) scales asafl(q,pl) which coincides with the Flory prediction found in RE8].
:q4f(q/pf)- Thus the anomalous dimensigrfor the bend- This is nothing but the usual Flory result for a

ing rigidity vanishes, as required by the nonrenormalizatiolD —1)-dimensional  self-avoiding ~ object in  a
theorem Z=1. Similarly it is simple to show that (d—1)-dimensional embedding space, and corresponds to
2+, treating the different transverse slices of the tubule as inde-

=7 - 4 X S .
G. (@,p.)=p, "g(a/pL), .Wlth 7. =4z=2. Since the penden{3]. The other exponents are likewise determined in
size exponent must exceed its phantom valdg/2, one has this approximation to be

z>1/2 and thereforey, >0.

From the above scaling relations, we end up with only 4+(D—1)(d+3)
one independent exponent in the theory, depending on the Zg= ,
precise value ob. This value, and the subsequent predictions 3(d+1)
for all exponents, may be fixed by imposing one more con-
straint on the renormalization factors of our model Hamil- _ 3(D+1) (2.19
tonian. At this stage, this extra imposed constraint is totally F 4+(D-1)(d+3)° ’

arbitrary, and different constraints lead to different values of

the exponents. It is interesting nevertheless to explore limitThe corresponding values for the physical tubiide=2 and
ing cases where scaling is dominated by one component af=3) are 5g=—2, vp=3, z==2, and{r= .

the Hamiltonian only, either the elastic term or the self-
avoiding interaction. The corresponding limiting values of
the exponents indeed define the range of values in which the ) o ]
exact exponents are expected to fall. One can fix the scaling A different approximation one can make is to assume that
from the elastic terms only by assuming the absence ofhe self-avoiding term is not renormalized viz,=1. Thisis
renormalization for thenh field, i.e., by imposingZ, =1, exqctl_y the approximation which is made in a Gaussu’;_m
yielding 5=0. One then recovers the bare values(,, z varla.tlonal .treatment.of the problem, where the. exact dens_|ty
—1 and v=¢,/2 of the Gaussian theory without self- fun.ctlonal is a.ppromm.ated by.th.e best_po_ssmle Gags&an
avoidance. On the other hand, we can consider the strongfeight for the fielch, using a variational principlgg]. In this
coupling limit where scaling is fixed by the self-avoiding €@S€ the flelldw is renormal!zed, but the self—avo'|d|.ng inter-
term only. This yields the Gaussian variational result, as dis&ction term is not. Repeating the above analysis in the case
cussed in Sec. I B below and also treated in R&l. A Z,=1, one finds easily from the fixed point condition that
third, intermediate, estimate of the exponents is the Flory _le
result, obtained by balancing the elastic and self-avoiding Syar= .
contributions in the Hamiltonian, as discussed in Sec. Il A (D—1)(d+3)
and in Ref.[3]. Notice finally that these different estimates . o o . ]
become exact and identical on the 0 line, and can be used The size exponent in this approximation, first obtained by
as starting points for a systematic expansion in tBed{ RT, is

plane around this line. This idea was used in RE®) for the

self-avoiding isotropic membrane Edwards model. In Sec. » :7(D_1) (2.21)
IV, we will calculate the correction to the Gaussian, Flory, var (3d-5)’ '

and variational estimates of the roughness expofieitfirst

order ine and for fixedD=2. and the other exponents are likewise determined to be

B. Gaussian variational approximation

(2.20
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, _(D—=1)(d+3) x'y )
T (8d-5) 171 x5y /
(3d=5) (2.22 F 373 &Yy
7 1 le Yy T- k3 _ ]?
§var=m- X ) /E; 4
The corresponding values for the physical tubule &g= .
-2, Va1, Zya— 5, and{,,= ¢. The unphysical nature of +k1 g
these value$r and ¢ cannot exceed)lindicates that, in this . d + 3 +]g’
approximation, the tubular phase is unstable. Bet 2, in x] y] +k X,y 4
fact, one sees from Ed2.2]) that the tubular phase is un- 2 373 X,y
stable belowd=4. It is known, however, that the Gaussian XY,
variational method is a strong coupling method which usu-
ally overestimates the size exponent. y

I1l. RENORMALIZABILITY . . .
FIG. 2. The diagram of ordeN in Eq. (3.2 is made ofN

We now turn to the issue of the perturbative renormaliz-dipoles. The two end points of a given dipole are located at the
ability of the theory fore=0. We rely on the general formal- same positiory; in they direction but at different positions; and
ism introduced in Ref[15] for the treatment of nonlocal x; in thex direction.
interactions. In the diagrams of the perturbative expansion in

b, we first identify the singular configurations of interacting 89 Vrh(x;,y) —h(x! ,yi)]
points which contain possible divergences. We then use a §
short distance multilocal operator product expansion _ d™ ki ik; -[h(x; .y —h(< L y)] 34
(MOPE) to analyze these singularities, and show that they - (277)3*1 € ' L
are proportional to the insertion of multilocal operators. A
simple power counting argument allows us to extract fromyq gne is led to evaluate the Gaussian average
all singular configurations those which give rise to actual
divergences. This, together with some symmetry arguments, n
singles out all the operators which require renormalization H eiki-[h(xi ) —h(x/ )]
From this analysis, we deduce that the Hamilton{@rt) i=1 0
renormalizes onto itself, according to E@.5 and more-
. . . . . N
over,Z=1, i.e., there is no renormalization of the bending .
energy term. Our analysis will be presented b 2, but it =ex _5”21 ki-Ki{Go(Xi —Xj,Yi—Y))
could be extended easily to the rangi& D<3, where the '
roughness exponetdt=(5—2D)/2 satisfies &< {y<1. —Go(X{ —X;,Yi—Yj) —Go(Xi =X ,Yi—Yj)
Let us concentrate on the partition functiGghassociated
with the Hamiltonian(2.1) atD=2: .,
0 +Golx ~X] ,yi—y,->}), 35
Zy= f DLh(x,y)Jexp(—H[h]). (3.0 _ _ _
whereG, is the two-point function
It can be expanded in powers bfaccording to L
> N Go(x,y)=— 5 == ([h(x,y)—h(0,01%)o
(—b2)" , 0 2(d—-1)
Zb:ZONE:O T iI:[j_ dXidXi dy|
N e ol
_ , 2 4|x 2|x )
X<H 89 BIh(x;,yi) — h(x; ,Yi)]> , (3.2 v
=1 0 (3.9

where Z; is the partition function of the non-self-avoiding qre erf() denotes the usual
(b=0) theory and(( )}, denotes the corresponding Gauss'z(zl\/E)f“dt exp(t)
ian average 0 '

error function enf(

The term of ordeN in the perturbative expansidB.2) is
1 therefore naturally represented by a diagranNdfdipoles”
<("')>o=§ f D[h(x,y)]exp{ —%f dx dy{[&ih(x,y)]2 of interacting points located ak{,y; ;X{ ,y;) with “charge”
0 *k;, as depicted in Fig. 2. Note that the two end points of a
given dipolei are located at the same positignin they
+[t9xh(X,Y)]2})("')- (3.3 direction, but at different positions, andx in the x direc-
tion. A singular configuration of interacting points is found
Each 6 function in Eq.(3.2) can be written as when the quadratic form
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all the atoms of a molecule have the same position inythe
N direction. Note also that singularities coming from discon-
AR nected molecules can be treated separately, and that dipoles
in the molecule which do not belong to a logpead
N brancheys do not contribute to the singularity and can be
\ ignored.

- atoms The construction above identifies the singular configura-
“£7 tions of end points which give rise to possible divergences.
J/ Such a configuration is characterized by a setvbfatoms
0 labeled byp, and with position X,,y), with the samey
Y, coordinate for all the atoms. For each atpmwe denote by

I, the set of dipoles which attach their first end point at the
atomp [i.e., (x;,y;)=(Xp,y)], and byJ, the set of dipole$
which attach their second end point at the atpnfi.e.,
(xj’ ,Yj)=(Xp,y)]. The singularity can be analyzed by use of
y the general short distance MOPE introduced in RES)]. In
practice, one can return to the operator leftbe left hand
FIG. 3. A molecule with two loops made of a connected assemside of Eq.(3.5)] and write the contribution of the atomin
bly of four dipoles. This molecule has three atoms located at dif-Eq. (3.5
ferent values ok but at the same value of.

H el ki-h(x; ,yi)H e~ ikj-hod L))

Q({ki})=iEj Ki-Ki{Go(Xi—Xj,Yi—Yj) —Go(X =X ,yi—y)) <l JeJdp
—Go(Xi—X] ,Yi—Yj) +Go(X =% ,yi—y))} (3.7 = iH g'ki-htx ‘yi)jll g 1kj-hey)) :iH e'ki-hti i)
€lp €<p o '€'p
appearing in Eq(3.5 is not positive definite. Using the in- /
tegral representation of the two-point function x [] e tkirhtxjyp:, (3.1
jed
dp dq ei(px+qY)_1 P
GO(X’y):f 27 2w q*+p? 38 i.e., separate in the right hand side of E8,5) the propaga-
tors Gy which involve only points inside the atom, and
we obtain which reconstruct precisely the Gaussian average above,
5 from those involving at least one end point not in the afmm
E k_eiqyi(eipxi_eipxi’) corresponding to a normal product prescription. This separa-
dp dgq |7 tion allows us to isolate the singularity in the factorized
Q({ki}):f o7 2m q*+p? : Gaussian average, while the normal product has a regular
(3.9  expansion inx;—Xx, (iely), Xj =Xy (jeJp) andy,—y(k
el,UJdp)
The quadratic formQ is thus positive definite except for
those configurations of end poinfz; ,x/ ,y;} for which one K hixe ) _
can find a set of chargd;}, not all zero, satisfying referie Y 1+|i2| [(Xi=Xp)Ki- dxh(Xp,y) +(Y;
S'p
Ei ke Wi(elPXi—ePX)=0, V(p,q) —Y)ki'ﬁyh(xp,y)]—i;; [(Xj'—Xp)kj‘axh(Xp:Y)
€<p
@p(x,y)zz Kis(y—y)[ 8(x—x;) — 8(x—x{)] (Y= Ykj-dyh(xp,y) I+ |1, (.12
I

=0, Vxy). (310 with kp=(EiE,pki—E]—€kaj) being the total charge of the
This latter condition is the requirement that the charge denatomp. The same treatment can be applied to all the atoms
sity p(x,y) vanishes identically, while some of the chargesOf the molecule, creating for each atopnan exponential

k; remain nonzero. This is possible if some of talipoles  factor €'o""» %), together with insertions of various,
arrange to form a so-called “molecule,” i.e., attach their endand/ord, derivatives of the field at the point &;,y). As in
points and assemble into a connected diagram with at lea&ef. [15], the MOPE is obtained by performing the integra-
one loop, such as in Fig. 3. A set of end points in contaction over the chargek; for the dipolesi forming the mol-
form what is called an “atom,” and their common position ecule. This expands the corresponding product of bilocal op-
is the position of the atom. A zero @ is obtained by an erators IT; 8¢ Y h(x;,y;) —h(x{ ,y;)] around the chosen
appropriate choice of nonzero charges, keeping all the atongngular configuration in terms of geneddl-body operators
neutral, which is possible in the presence of a loop. Note thavf the form
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M K 6(9~1) factors, with canonical dimensionKZo(d—1) in
db(xl,...,xM)=f dd‘lh]_[ Ap(Xp,Y) units ofy. The dimension of the multilocal operatdrin Eq.
p=1 (3.13 is

X Vs Uh—nh(x,,y)], (3.13 M
» , . , (d=1)¢o+ 2 {dim[A]=[|mg|+(d=1)]¢e},  (3.16
multiplied by singular coefficientésee Ref[15] for details. p=1

HereA,(X,,y) denotes either the unity operator 1 or a local

operator in the derivatives of the fieldat point (x,,y) and  With the notation|m|=3¢_im,. The corresponding singu-
™ is a shorthand notation fdif%_%4™. The above opera- lar coefficient in the MOPE has thus the dimension

tors are multilocal in the direction, but local in they direc- M

tion. This is because all the atoms in the molecule have the — (K +1)(d—1)¢,— E {dim[Ap]—[|mp|+(d—1)]§o}.
samey position. We will see two explicit examples of the p=1

MOPE in Sec. IV, where explicit one-loop calculations are (3.1
presented.

At this stage, let us mention the following important result 1 iS coefficient has to be integrated over tfie-2M relative

concerning the case where one inserted operator invalyes X coordinates and this —1 relativey coordinates of the R

derivatives onlyfsuch as ¢2h)?]. Indeed, such a term comes end points of 'the dipoles approachmg the positions olhe

from the expansion of so);ne operawfi " Y taken atx; atoms. This gives a superficial degree of convergence for the
I

=X, exactly (we suppose here that |, rather thari € J,)). corresponding integral
However, in contrast with the coordinate (x/), which ap-
pears only in the atonp, the coordinatey; appears in a
second atonp’ (such thati e J,/), which is in general dis- M

tinct from p. The expansion iry;—y can be done simulta- + 2 (ImylLo—dim[A])=3(M—2)+e(K—M+1)
neously on the operate*i-"®i Y1) above forx;=x,, and for p=1

the operatoe ) for x/ =Xpr, in which case the op- M )

erator to be expanded i —vy is e'ki-[h(Xp.¥)=hCp ¥ \We + 21 (|mp|go—dim[A]), (3.18
thus obtain the important result that those operators with P

only partial derivatives in thg direction can be regrouped so with e=5—(d—1)¢,. Note thatk—M+1 is nothing but

that they involve the difference of the field at two (in 6 hymber of loops in the molecule. A divergence is found
general d|ffere'r)t points of the molecule. An example of wheneverw=0. It is easy to check that all the local operators
such operator is the two-body operator A but the unit operator have a strictly negative dimension in
B units ofy, as a consequence of the relatigg< 1. At €=0,
{ay[h(x1,y) —h(x2,y)1}*8" V[ h(x1,y) —h(xz,y)]. =<0 requires eitheM=2, m;=m,=0, and A;=A,=1,
314 \which is nothing but the original contact interaction in Eq.

] o (2.2), or M =1, in which caseb is either the unity operator 1
If the two end points of the dipolehappen to belong to the ;. 5 |ocal operatorA(x,y) which moreover must satisfy

same atonp, then the operator to be expanded is 1, whichgimra1= -3, We already know from the previous discus-
means that this dipole cannot give rise to insertions of locakjyn that A must contain at least one, derivative since
operators with only, derivatives. o terms with onlyd, derivatives are not created. Due to the
This latter remark has an important implication for the, symmetry, the coefficient of a term with only ong
renormalization of local operators, coming from the particu- o \ishes and oné thus needs at leastayderivatives. The
lar case of singular configurations where the molecule hag, . \yith |argest dimension satisfying this criterion is the

only one atom. In this case, each dipole in the molecule fa”%riginal elastic term in Eq(2.1) (d,h)2 which already has
automatically in the class just described of dipoles with theirdimension—S. It is thus togetherx with the unity operator

two end points in the same, unique, atom. We thu_s obtain e only renormalized local operator in the theory. The

important result that local operators with onlly derivatives o 5majization of the unity operator is simply a shift in the

are not created by renormalization. Such terms, when absegbe anergy of the system. In particular, it disappears in the

from the original Hamiltonian(2.1), never appear, and the .o nntation of average values of physical observables, and

only such operator present in E@.1) [namely, Gyh)z] IS can simply be ignored.

not renormalized, that is In conclusion, we have shown that the Hamilton{&ril)
renormalizes onto itself, witd=1, as announced. Fet>0,

Z=1. (3.19  the theory is super-renormalizable, singén Eq. (3.18) in-

creases with the number of loops of the molecule.

Having identified the singular configurations and the cor-
responding general multilocal operators to which their singu-
larities are proportional, it remains to identify those singu-
larities which are not integrable and give rise to actual
divergences. If the molecule is made Kfdipoles, the op- Let us now present one-loop calculations, which give cor-
erator which is expanded via the MOPE is the product ofrections at first order ire for the critical exponentg, v, and

w=2(2K—M)+(K—1)+[M—(K+1)](d—1)Z,

—iki-h(x{ .y;

IV. ONE-LOOP CALCULATIONS



(@) (b)

FIG. 4. The two singular configurations leading @ a one-
loop renormalization of ¢;h)? and (b) a one-loop renormalization
of 54" Vh(x,y)—h(x',y)].

z. Here we use dimensional regularization by considering the
theory ate>0, and by calculating the renormalization factors

Z, and Z, needed to make the theory finite fer=0 at

one-loop order ihg. We use a minimal subtraction scheme

where we keep for the first order correction4n and Z,
only the corresponding pole ia
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84 DLh(x,y)—h(x',y)]
_ 1 1
- (477)<d—1)/2 [_GO(X_X/,O)](d—l)/Z
1 (x—x')? )
xX1- Z (_Go(X—X/,O))(d+1)/2 X :[ﬁxh(XO!y)] :
+oo 43

We use the above formula for the renormalized the@r$),
expanded to first order ibR. As in Eq.(3.2), the bilocald
interaction comes with a facter bRu /2, and the singularity
in (4.3 proportional to g.hR)? will be canceled by the cor-
responding counterterm, appearing with a facte(Z,
—1)/2, provided we choose

(Z.-1)_ o nf
2 2

LLreyme X
X<u2 4 (4m)5 (|X|7?)5-¢
(4.4)

where X=xR—x'R, and where we used Ed4.2) and d
=11-2e€. This leads to

We obtain our results in the framework of the MOPE
described above, which we use here in two simple cases: the
one-atom molecule made of a single dipole with its two end
points approaching each othsee Fig. 4a)] and the two- Let us now analyze the divergence for Figb)4 We now
atom molecule made of two dipoles approaching each othelse the OPE for the first atom
[see Fig. 4b)]. The first situation will give us a renormaliza- '
tion of the local operator d,h)?, and hence a first order
correction toZ, . The second situation will give us a renor-

bR 1

2=t e e

(4.5

ei[kl- h(x1,y1)+kz-h(X5,y2)]

malization of the bilocal operators“~1 [h(x,y)
—h(x’,y)], and hence a first order correctionZq.

To analyze the divergence for Figia, we use the opera-
tor product expansiofOPE):

ek [h0ey) =h(x )] = @*Golx—x".0 1 1 (x—x" K- 1 d3h(Xg,Y):

- %(X_X/)zkakﬁ :ﬁxha(xo ,y)&x

Xhﬁ(xoay):—’—”.}! (41)
wherexy=(x+x")/2, and
Go(x—x' O)=—i |x—x"[2, 4.2
L} 2@

When integrated ovek this gives the MOPE:

= e k1kaGo(xi=x2.y17Y2): gi(ka+ka)-h(Xo.Yo)f 7 4 .. .}

(4.6

where Xy=(X1+X,)/2 andyy=(y;+Y2)/2, and the similar
OPE for the second atom,

e ilky- h(x] .y1) +ka-h(x5.y2)]

— @~ k1-kaGo(X; =X5 Y1~ Y2)- g~ i(ka+kg)-h(xg Vo1 +-0)

(4.7)

wherexg= (X1 +X5)/2. The MOPE is obtained by integrating
over k; andk,. More precisely, we defink=k,+k, and
q=(k;—k,)/2, so thatk;-k,=—0q2+0O(k?). This latter
O(k?) term can be set to zero if we are interested in the
leading singularity, which is responsible for the divergence.
Integrating overk reconstructs a bilocad operator, and we
obtain the following MOPE:

897 Bh(x1,y1) —h(x],y1) 189 VI h(x2,y2) —h(X5,y2)]

1 1

—(Am) YR —Gy(xg—Xp,y1—Y2) — Gol(X;—

) —75 09V h(Xg,Y0) —h(X,Yo) I+ .
Xp Y1—ya)] & 2 [h(Xo,Yo) =h(Xp.Yo)]

4.9



7030

M. BOWICK AND E. GUITTER 56

We are interested in the pole éiobtained when integrating This fixes the value of the anomalous dimensibthrough

the coefficient of thes term on the right hand side of Eq.

(4.8) over the relative coordinates,—Xx,, x;—X; andy;

—Yp. Defining Y=|y;—y,|+[xy =%, "2+ [x; = x| u

= |x1= %" |y1 =y, andv =[x;—x;|Y%|y1 - y,|, and us-
ing again the explicit formul&3.6) for Gy andd=11-2¢,

we obtain a pole ire equal to

2Vm® [t Y4 © (e uv
(4m)5 jo dYFXJod“L =IO
(4.9

32

where f(u)=u exp(-1/4u?) + (\/=/2)erf(1/21). The inte-
gral overY gives a polew™ /€. The integral oveu andv is
convergent, and will be denoted by

—Taul Ty M 1 [T 2
I_fo dufo do [f(u)+f(v)]° 24[0 da[F(a) ],
(4.10

whereF(a)=a?f3du ue 3/, The functionF(a) satisfies

a—0 a—w
F(a) — 1 andF(a) ~ exp(—aJ7/2). The integrall can
be estimated numerically tio=0.068 373 636L).

Applying, as before, the MOPE of E(4.9) to therenor-
malizedtheory, now expanded as in E§.2) to second order
in bR, the N=2 diagram gives twos interactions with a
factor (bRu<)?/8, leading to a divergence equal to

(bfu9? 1 pcl

(4.11

€

R d R d
5(b )E,U,a InZL=,8(b )Wln ZL

0

=[—ebR+ O((bR)z)]( 1672 %+O(bR)>
bR

=~ g2t o((b™?) (4.16

and

5= 8(bR*)= — —= O(€?). 4.1

(b™) 5 7+ (%) (4.17

JE— + J—

Jr 2
Numerical values for the exponents@t=2 andd=3 are
obtained by setting=4 in the above formula, giving

6=—1.050, (4.18
and thus the estimates
z=0.678,
v=0.517,
{=0.762. (4.19

To understand the values we obtain for these exponents more
clearly, notice that the factof in the denominator of Eq.

with a factor of 2 coming from the two ways of assembling (4 17 is actually the factor ¢+ 3)/4= (%) — (e/2), appear-
the two dipoles of the diagram into a one-loop molecule.ing in the exponent oZ, in Eq. (2.7), to first order ine. It is

This divergence will be canceled by tid@nteraction coun- e refore legitimate, at first order, to replace this fadty
terterm in the renormalized Hamiltonian, which comes in thethe factor? obtained by settingl=3 directly. This in prac-
2 - .

expansion with a factor (Z,— 1)bRw/2, provided
bR

Zb:1+m§;.

(4.12

Using Eqgs(4.5 and(4.12, we relate the bare and renormal-

ized coupling constants as in EQ.7) for D=2 andd=11
—2€:

+0((bR)?),

(4.13

leading, after differentiation with respect toat fixedb, to
the one-loop Wilson function

| bR) ( 1 bR)(7—E)/2

— ,,€hR . —
b “b(“me 1+ 7602

d I -
Ry\— ,,_ | hR— _ _hR R\2
B(b )_’“d,u 0b eb™+ 27T5,2+ > 167TZ)(b )
+0((bR)3). (4.14)
We thus obtain an infrared stable fixed point at
Rx _ € 2
b =7 1 +0O(€). (4.195

271'52+ 2 1672

tice amounts to making a partial two-loop correction. This
leads to new estimate$=—2.212 and;=1.053, well above

the original estimatg4.19, and actually even unphysical
since larger than 1. We see here that, due to the large value
of e=4 at the physical dimensiodi= 3, the first order esti-
mates(4.19 are not robust with respect to second order cor-
rections and cannot be reliable.

It is also interesting to develop alternative expressions for
the roughness exponert as was done for the isotropic
membrane Edwards model in R¢fl6]. Indeed, the above
estimate of¢ relies on expressiofR2.13, expressing the de-
viation of ¢ from its Gaussian valué, at e=0, in terms of
the anomalous exponent= u(d/du)|, INZ; , which we es-
timated to first order ire in Eq. (4.17). Using relation(2.7)
between the bare and renormalized coupling constants, how-
ever, we can write, at the fixed point, the two following
equivalent definitions ob:

S—s 4 d | Z,
“F AT+ Mdul, " Z,
=4 —4 — InZ 4.2
- Var_(D_l)(d+3)MdM0 nZy, ( . Q

leading directly to the two identities
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D-1 d Zy renormalization factors we are able to reproduce three differ-

§:§F+{4+(D_l)(d+3)} e In Z. ent limits of the model, viz. the trivial Gaussian model, the

0 Flory approximation and the Gaussian variational approxi-

mation[3]. This shows the power of this approach. We then

=§var+m " @ InZ,. (4.21) treat the fluctuations of the model to one loop in the self-
0

avoiding parameter in anexpansion about the upper critical
dimension. This yields predictions for all the critical expo-
nents to first order ire.

One should notice that our results have been obtained for
an infinitely large membrane. For a finite membrane with
extensionL, in the y direction andL, in the transverse

These relations express the deviation fofrom its Flory
value and its variational value, respectively. As we did dor
in Egs. (4.16 and (4.17), we can obtain foD=2 andd
=11-2e¢ the estimates to first order in

8l direction, finite size scaling laws can be derived in the above
1— — renormalization group framewofl8]. Due to the anisotropic
d Zy Vr 2 nature of the tubular phase, however, there are many differ-
'“@ o n Z_ 8l 7 e+0(e%), ent _scaling regimes, depending in particular on the relative
—+ = scaling ofL, andL, .
Jr o 2 4.22 Finally, let us stress that the above analysis of renormal-
' izability does not depend on the precise form of the Gaussian
8l elastic term in they direction. One could imagine replacing
d \/_; the bending energy term by a tension terﬁgi"oz, describ-
pw—| InZ,=— e+0(€). ing for instance a tubule under longitudinal tension. The
dul, ﬂ+ Z theory would then also be renormalizable in @a2D -1
Jr 2 —(d—1)(2—D)/2 expansion, with again no renormalization

of this tension term and only one independent exponent in
One can easily check that the two E@4.21) give exactly the theory. In this case, however, the calculation cannot be
the same estimate as before foat first order ine, provided performed aD =2 directly, where the upper critical dimen-
that the quantitiegr and {,,,, and the different factors ap- sion is infinite. As for self-avoiding isotropic membranes, a
pearing in Eq.(4.21), which involved, are themselves ex- complete study of the problem f@ <2 is required.
panded to first order i. After this paper was completed we were informed by RT
On the other hand, one could also decide not to expanthat the Hamiltonian equatiof®.1) is not sufficient for a
any of these factors and impode=3 directly. If one more- complete description of polymerized tubules d&=3. RT
over restores the factod(3)/4 instead off, as discussed argued that a more involved Hamiltonian, including the an-
above, all the various expressions reproduce the unphysicabrmonic elastic terms of RT, Ed5), in addition to the
estimate/=1.053. If only some of the terms are expanded inself-avoiding interaction, is needed. Since the present paper
€, we obtain lower values af. We thus expect that the origi- is rigorous and self-consistent, we feel that it nevertheless
nal estimate/=0.762, obtained by expanding all terms at makes a vital contribution to our present understanding of
first order ine, is actually a lower bound on the exact value tubules. The analysis of the fuller model suggested by the
of ¢. remarks above presents a very definite challenge—to our
knowledge there does not exist in the literature any proper
V. CONCLUSIONS renormalization group treatment of a theory with both non-

) ) o ) linear elasticity and two-body self-avoidance.
In this paper we studied, within the expansion, the ef-

fects of self-avoidance in the tubule model introduced by
RT, going beyond their variational and Flory theory treat-
ments of self-avoidance. We first show that the model is
renormalizable and, furthermore, that the bending energy We thank Leo Radzihovsky for very helpful discussions.
term is not renormalized. We then derive very general scalThe research of M.B. was supported by the U.S. Department
ing relations for the critical exponents of the model at anof Energy under Contract No. DE-FG02-85ER40237. We
infrared stable fixed point. These relations imply there isthank Franois David and Marco Falcioni for a critical read-
only one independent exponent. For special choices of thing of the manuscript.
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